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Why Should We Care?

Machine Learning on Graphs
Ï machine learning is based on the promise that similar objects should have similar

properties
Ï what “similar” means depends on the properties we are interested in

Dynamical Processes on Graphs
Ï want to understand how a graph property evolves as the graph changes
Ï could be measured by difference quotients∣∣f (G )− f (G̃ )

∣∣
δ
(
G ,G̃

) .

distance between G and G̃
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Measuring Distance

A graph metric is an isomorphism-invariant

G ∼=G ′,H ∼=H ′ =⇒ δ(G ,H)= δ(G ′,H ′)

mapping δ :G×G

class of all graphs

→R≥0 such that for all
graphs G ,H , I :

(i) G ∼=H =⇒ δ(G ,H)= 0;

(ii) δ(G ,H)= δ(H ,G );

(iii) δ(G , I )≤ δ(G ,H)+δ(H , I ).

It would be more precise to speak of a graph pseudo metric, and only of a metric if
the converse of (i) holds as well (but we don’t).
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Measuring Similarity

We give no formal definition of what constitutes a “similarity measure”.

Similarity measures can be derived from metrics by applying an anti-monotone
function, for example,

σ(G ,H) := exp
(−c ·δ(G ,H)

)
for a graph metric δ and a constant c > 0.
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Edit Distance
We start by defining several metrics on graphs G ,H of the same order |G | = |H | = n.
W.l.o.g. V (G )=V (H)= [n].

Graph Edit Distance

δed(G ,H) :=min
{
|D|

∣∣∣ D ⊆ ([n]
2

)
such that

(
[n],EG △D

)∼=H
}

.

Examples

1. Pn := path of length n−1; Cn := cycle of length n.
Then δed(Pn,Cn)= 1.

2. Sn := star with n−1 tips.
Then δed(Sn,Cn)= 2n−5 and δed(Sn,Pn)= 2n−6.

3. Kn := complete graph on n vertices; Kℓ,m complete bipartite graph with parts of
size ℓ,m.
Then δed(Cn,Kn)= n(n−3)

2 and δed(Kn,K n
2 , n

2
)= n

2(
n
2 −1) if n is even.
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Edit Distance via Matrix Norms
Entrywise Norms
For a matrix A= (Aij ) ∈Rn×n and p ≥ 2 we let

∥A∥(p) :=
(∑

i ,j
|Aij |p

) 1
p

.

∥A∥(2) is known as the Frobenius norm of A.

Observation

δed(G ,H)= 1
2
min
π∈Sn

∥∥Aπ
G −AH

∥∥
(1)

= 1
2
min
π

∥∥Aπ
G −AH

∥∥2
(2),

where
Ï AG ,AH ∈ {0,1}n×n are the adjacency matrices of G ,H;
Ï Sn is the set of all permutations of [n];
Ï Aπ

G is the matrix obtained from AG by simultaneously permuting rows and
columns with π.
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Local Edit Distance

Local Edit Distance

δled(G ,H) :=min
{
∆

(
[n],D

) ∣∣∣ D ⊆ ([n]
2

)
such that

(
[n],EG △D

)∼=H
}

,

where ∆
(
[n],D

)
is the maximum degree of the graph

(
[n],D

)
.

Examples

1. δled(Pn,Cn)= 1.

2. δled(Sn,Cn)= δled(Sn,Pn)= n−3 for n≥ 4.

3. δled(Cn,Kn)= n−3 and δled(Kn,K n
2 , n

2
)= n

2 −1 if n is even.

P6 C6 S6 K6 K3,3
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Local Edit Distance via Matrix Norms
Operator Norms
For a matrix A= (Aij ) ∈Rn×n and p ≥ 2 we let

∥A∥p := max
x∈Rn\{0}

∥Ax∥p

∥x∥p
,

where for a vector a= (a1, . . . ,an) ∈Rn, by ∥a∥p = (∑n
i=1 |ai |p

) 1
p we denote the usual ℓp

vector norm.

∥A∥2 is known as the spectral norm of A.

Observation (Gervens, G. 2022)

δled(G ,H)= min
π∈Sn

∥∥Aπ
G −AH

∥∥
1.

Remark
Another interesting graph metric is derived from the spectral norm:

δsp(G ,H) := min
π∈Sn

∥∥Aπ
G −AH

∥∥
2.
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Cut Distance
For sets S ,T ⊆V (G ):

eG (S ,T ) := number of edges of G between S and T , counting edges with
both endvertices in S ∩T twice.

Cut Distance

δ□(G ,H) := min
π∈Sn

max
S ,T⊆[n]

∣∣∣eG (S ,T )−eH
(
π(S),π(T )

)∣∣∣.
Theorem (Lovász (?))
For random graphs G ,H ∼G(n, 1

2), with high probability it holds that

δ□(G ,H)=O(n3/2) and δed(G ,H)=Ω(n2).
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Local Edit Distance via Matrix Norms
Cut Norm
For a matrix A= (Aij ) ∈Rn×n we let

∥A∥□ := max
S ,T⊆[n]

∣∣∣∣∣ ∑
i∈S ,j∈T

A(i , j)

∣∣∣∣∣ .

Observation

δ□(G ,H)= min
π∈Sn

∥∥Aπ
G −AH

∥∥
□.

Theorem (Nikiforov 2009)

1
n
δ□(G ,H)≤ δsp(G ,H)≤ 2

√
δ□(G ,H).
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Normalisation
Observation
The metrics scale differently. Denoting the edgeless graph with n vertices by Ln, for
all metrics δ considered so far we have

δ(Ln,Kn)=max
{
δ(G ,H) | |G | = |H | = n

}
.

Furthermore,

2δed(Ln,Kn)= δ□(G ,H)= n(n−1)∼ n2,

δled(Ln,Kn)= δsp(G ,H)= n−1∼ n.

Normalised Metrics

δ̂ed(G ,H):= 2
n2δed(G ,H), δ̂□(G ,H):= 1

n2δ(G ,H),

δ̂led(G ,H):= 1
nδed(G ,H), δ̂sp(G ,H):= 1

nδsp(G ,H).
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Relations Between the Normalised Metrics

Example

δ̂ed(Sn,Cn)=
2(2n−5)

n2 −−−−→
n→∞ 0 and δ̂led(Sn,Cn)= n−3

n
−−−−→
n→∞ 1.

Corollary
For random graphs G ,H ∼G(n, 1

2), with high probability it holds that

δ̂□(G ,H)−−−−→
n→∞ 0 and δ̂ed(G ,H)=Ω(1).

Corollary

δ̂□(G ,H)≤ δ̂sp(G ,H)≤ 2
√
δ̂□(G ,H).
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δ̂□(G ,H)−−−−→
n→∞ 0 and δ̂ed(G ,H)=Ω(1).
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Comparing Graphs of Distinct Sizes

The Blow-up Construction
G�k obtained from G by
Ï replacing each node by a set of k nodes;
Ï replacing each edge by a complete bipartite graph.

Blow-up Distance
For every normalised metric δ̃ and graphs G ,H of order
m := |G |,n := |H | we define

δ�(G ,H) := lim
ℓ→∞

δ̃
(
G�nℓ,H�mℓ

)
.

Remark
There is an alternative way of defining the blow-up
distances through an optimal transport formulation.
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Properties of the Blow-up Distances

Observation
Let δ be one of the metrics considered so far.

1. For all graphs G and k ≥ 1 we have δ�(G ,G�k)= 0.

2. For all graphs G ,H of the same order it holds that

δ�(G ,H)≤ δ̂(G ,H).

Furthermore, there are example of graphs where the inequality is strict.

Theorem (Borgs et al. 2008, Pikhurko 2010)
For all graphs G ,H of the same order we have

δ
�
ed(G ,H)≥ 1

3
δ̂ed(G ,H) and δ

�
□(G ,H)≥

(
δ̂□(G ,H)

32

)67

.
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Vector Embeddings

A vector embedding (of graphs) is an isomorphism invariant mapping η :G→H from
graphs to some Hilbert space H (called the latent space).

Every vector embedding η :G→H defines a graph metric:

δη(G ,H) := ∥η(G )−η(H)∥H =
√〈

η(G )−η(H),η(G )−η(H)
〉
H

.

Example
η :G→Rk mapping G to the k largest eigenvalues of its adjacency matrix AG in
decreasing order.

Idea
Define vector embedding in such a way that the geometry of the latent space has a
semantic meaning on the space of graphs.

16
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Examples

Example (Subgraph Embeddings)
For graphs F1, . . . ,Fk , we define a vector embedding subF1,...,Fk :G→Rk by

SubF1,...,Fk (G ) := (
sub(F1,G ), . . . ,sub(Fk ,G )

)
,

where sub(F ,G ) is the number of subgraphs of G isomorphic to F .

Graphlet kernels are based on this idea.

Example (Logic Embeddings)
For formulas ϕ1, . . . ,ϕk of some logic on graphs (say, first-order logic), we define a
vector embedding modϕ1,...,ϕk :G→Rk by

Modϕ1,...,ϕk (G ) := (
b1, . . . ,bk

)
,

where bi = 1 if G |=ϕi and bi = 0 otherwise.

17



Examples

Example (Subgraph Embeddings)
For graphs F1, . . . ,Fk , we define a vector embedding subF1,...,Fk :G→Rk by

SubF1,...,Fk (G ) := (
sub(F1,G ), . . . ,sub(Fk ,G )

)
,

where sub(F ,G ) is the number of subgraphs of G isomorphic to F .

Graphlet kernels are based on this idea.

Example (Logic Embeddings)
For formulas ϕ1, . . . ,ϕk of some logic on graphs (say, first-order logic), we define a
vector embedding modϕ1,...,ϕk :G→Rk by

Modϕ1,...,ϕk (G ) := (
b1, . . . ,bk

)
,

where bi = 1 if G |=ϕi and bi = 0 otherwise.

17



Examples

Example (Subgraph Embeddings)
For graphs F1, . . . ,Fk , we define a vector embedding subF1,...,Fk :G→Rk by

SubF1,...,Fk (G ) := (
sub(F1,G ), . . . ,sub(Fk ,G )

)
,

where sub(F ,G ) is the number of subgraphs of G isomorphic to F .

Graphlet kernels are based on this idea.

Example (Logic Embeddings)
For formulas ϕ1, . . . ,ϕk of some logic on graphs (say, first-order logic), we define a
vector embedding modϕ1,...,ϕk :G→Rk by

Modϕ1,...,ϕk (G ) := (
b1, . . . ,bk

)
,

where bi = 1 if G |=ϕi and bi = 0 otherwise.
17



Graph Kernels
A graph kernel is a function κ :G×G→R such that
Ï κ(G ,H)= κ(H ,G ) for all graphs G ,H;
Ï for all graphs G1, . . . ,Gn, the (n×n)-matrix K with entries Kij := κ(Gi ,Gj ) is

positive semi-definite.

Theorem (Folklore)
Let κ be a graph kernel. Then there is a vector embedding η :G→H such that

κ(G ,H))=
〈
η(G ),η(H)

〉
H

for all graph G ,H.

Example
Weisfeiler-Leman kernels (Shervashidze et al., 2009) are efficiently computable
without ever explicitly computing the vector embedding into the infinite dimensional
latent space.
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Counting Homomorphisms
A homomorphism between graphs is a mapping between the vertices that preserves
adjacency.

Example

For all graphs F ,G of orders k := |F |,n := |G |:
hom(F ,G )= number of homomorphisms from F to G

hd(F ,G )= 1
nk hom(F ,G )=Pr

h
(h is a homomorphism from F to G ),

where h is mapping from V (F ) to V (G ) chosen uniformly at random.

19
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Homomorphism Distances

For every class F of graphs, we define a vector embedding HdF :G→RF by

HdF(G ) := (
hd(F ,G )

)
F∈F .

We can define an inner product on RF (even for infinite F) and turn it into a Hilbert
space.

It gives us the (normalised) graph metric

δF(G ,H)=
√ ∑

k∈N

1
2k |Fk |

∑
F∈Fk

(
hd(F ,G )−hd(F ,H)

)2
,

where Fk is the set of graphs of order k in F.
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Two Sides of Similarity

Operational View
Two graphs are similar if they
can easily be transformed into
each other.

Examples
edit distance, all distances based
on matrix norms

Advantage:
gives an alignment between
graphs
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gives an alignment between
graphs

Declarative View
Two graphs are similar if they
have similar properties.

Examples
distances based on vector embed-
dings

Advantage:
can be adapted to specific targets
by selecting properties/features

Question: How do these relate?
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Comparing the Topologies (Definitions)
Let δ,δ′ be graph metrics. We say that δ is coarser than δ′ (we write δ⊑ δ′) if for all
ϵ> 0 there is an ϵ′ > 0 such that

δ′(G ,H)< ϵ′ =⇒ δ(G ,H)< ϵ.

G

(G,δ′)

G

(G,δ)

id

Moreover, δ and δ′ are topologically equivalent (we write δ′ ≡ δ) if δ⊑ δ′ and δ′ ⊑ δ,
and δ is strictly coarser than δ′ (we write δ⊏ δ′) if δ⊑ δ′ and δ′ ̸⊑ δ.

Observation
δ⊑ δ′ if and only if the identity is a continuous mapping from the metric space (G,δ′)
to the metric space (G,δ).

Moreover, δ≡ δ′ if and only if δ and δ′ define the same topology on G.
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Comparing the Topologies (Results)

Graph Metrics Based on Matrix Norms

δ
�
□ ≡ δ

�
sp ⊏ δ

�
ed ⊏ δ

�
led.

Theorem (Borgs et al. 2008)

δ
�
□ ≡ δG.
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Computational Complexity

Theorem (G. et al. 2018, G. and Gervens 2022)
Computing δed,δled,δsp is NP-complete even if both input graphs are trees.

Remarks
Ï Various other hardness results are known. In particular, the distances are also

hard to approximate.
Ï The problem of computing the distances is closely related to the notoriously

hard quadratic assignment problem from combinatorial optimisation.
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Convex Relaxations
For graph metrics δ defined by matrix norms ∥ ·∥:

δ(G ,H)= min
π∈Sn

∥Aπ−B∥

=min
P

∥AP −PB∥

,

where min ranges over all (n×n) permutation matrices P.

Convex Relaxation

δ∗(G ,H)=min
X

∥AX −XB∥,

where min ranges over all (n×n) doubly stochastic matrices X .

Theorem
δ∗ed, δ

∗
led, δ

∗
sp can be computed in polynomial time.
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Counting Tree Homomorphisms

T = class of all trees

Theorem (Böker 2021, Grebík and Rocha 2022)

δ∗sp ≡ δ∗□ ≡ δT .
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Learned Embeddings

Graph neural networks are deep learning architectures for graphs. We can use them
to learn vector embeddings of graphs from data.

Theorem (Böker et al. 2023)

1. Let δ be a bounded graph metric computed by a GNN. Then δ⊑ δT.

2. For every n there is a graph metric δ(n) computed by a GNN such that δ(n) ≡ δT
on graphs of order at most n.
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Concluding Remarks

Ï Matrix norms and homomorphism counts give principled ways to define graph
metrics, and there are deep and interesting connections between them.

Ï There are other natural ways of defining graph metrics, most notably by viewing
graphs as finite metric spaces and using notions from discrete geometry (e.g.
Gromov-Wasserstein metric).

Ï The normalisation we chose is tailored towards dense graphs. Under our
normalised metrics, all sparse graphs are close to the empty graph.

There is no fully developed theory for sparse graphs.
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Further Reading

Most of the material of this talk is covered in the following article.

Grohe, M. (2024). Some Thoughts on Graph Similarity.
arXiv:2411.10182
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https://arxiv.org/abs/2411.10182

