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Measuring Distance

class of all graphs

A graph metric is an isomorphism-invariant mapping 6 : & x & — R>g such that for all
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Measuring Distance

A graph metric is an isomorphism-invariant mapping 6 : & x & — R>g such that for all
graphs G, H,I:

() G=H = 6(G,H)=0;
(i) 6(G,H)=6(H,G);
(iii) 8(G,1)=8(G,H)+8(H,I).

It would be more precise to speak of a graph pseudo metric, and only of a metric if
the converse of (i) holds as well (but we don't).
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Measuring Similarity

We give no formal definition of what constitutes a “similarity measure”.

Similarity measures can be derived from metrics by applying an anti-monotone
function, for example,
0(G,H)=exp(-c-6(G,H))

for a graph metric 6 and a constant ¢ >0.
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Edit Distance

We start by defining several metrics on graphs G, H of the same order |G| =|H|=n.
W.l.o.g. V(G)=V(H)=[n].

Graph Edit Distance

5ea(G,H) =min{ID| ) D < (B) such that ([n], Eg A D) = HY.

*—o—o L

Examples —o—o o
Pes Co
1. P,:= path of length n—1; C, := cycle of length n. ’*’

Then 6ed(Pn, Cn) = 1
2. 5, = star with n—1 tips. %6 M

Then 6e4(Sn, Cn) =2n-5 and 8eq(Sn, Pn) =2n—6. p K33
3. K, = complete graph on n vertices; Ky, complete bipartite graph with parts of
size ¢, m.

Then 6eq(Ch, Kn) = ”(" 3 and Sed(Kn Ko,n)=5(5—1) if nis even.
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1
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||A||(2) is known as the Frobenius norm of A.

Observation
1 1 . 2
bed(G, H) = 2 1A% _AH”(l) =5mn 1A% - AH”(Q)’

where
> Ag,Ane{0,1}™" are the adjacency matrices of G, H;
> S, is the set of all permutations of [n];

> AT Is the matrix obtained from Ag by simultaneously permuting rows and
columns with .
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Local Edit Distance
81ed(G, H) = min{A([n],D) ' Dc ([g]) such that ([n], EcAD) = H},

where A([n], D) is the maximum degree of the graph ([n], D).

Examples

1. 6|ed(Pn, Cn):]_
2. 6Ied(5n» Cn) :éled(sn,Pn) =n-3 for n=4.
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Local Edit Distance
Local Edit Distance
81ea( G, H) = min{A([n], D) | D < (1) such that ([n], Eg & D) = H},

where A([n], D) is the maximum degree of the graph ([n], D).

Examples
1. 6|ed(Pn, Cn) =1.
2. 6Ied(5n» Cn) = 5Ied(5n’ Pn) =n-3 for n=4.
3. 5Ied(Cn;Kn) =n-3 and 5Ied(Kn»Kg,g) = g —1if nis even.

—o—o ° ‘*‘ @
Ks K33

Pe Ce Se
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Local Edit Distance via Matrix Norms
Operator Norms

For a matrix A= (A;;) eR"™" and p=2 we let

_ 1Al p

[Allp:= max ,
xeR"\ (0} [|x]lp

1
where for a vector a=(ay,...,an) €R", by llall, = (X/_, |ai|”)» we denote the usual ¢,
vector norm.

IAll> is known as the spectral norm of A.

Observation (Gervens, G. 2022)
PG, H) = min | A% - Al

Remark
Another interesting graph metric is derived from the spectral norm:

Osp(G, H) = 7?2'5'1 1AG = Anll-
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Cut Distance
Forsets S, T < V(G):

eG(S, T):=number of edges of G between S and T, counting edges with
both endvertices in SN T twice.

Cut Distance

00(G H)= mip max,

e6(S, T) - en(n(S),x(T))|

Theorem (Lovasz (7))
For random graphs G,H ~Z(n, %) with high probability it holds that

5a(G,H)=0(n*?) and 6e4(G,H)=0(n?).
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Cut Norm

For a matrix A=

Local Edit Distance via Matrix Norms
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Cut Norm

For a matrix A=

Observation

(Aj) €eR™™ we let

Local Edit Distance via Matrix Norms

IAlg = max Yo A(L)) ‘
IESJET
05(G H) = min | AT - Auly
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Local Edit Distance via Matrix Norms

Cut Norm
For a matrix A= (A;;) eR"™" we let

> A(L)

IESJET

1Alg = max

Observation
006G, H) = min [ 4% - Au

Theorem (Nikiforov 2009)

1
~50(G,H) = 855(G, H) =2,/55(G, H).



Normalisation

Observation
The metrics scale differently. Denoting the edgeless graph with n vertices by L, for
all metrics 6 considered so far we have

8(Ln, Kn) = max{8(G,H) |G| = |H| = n}.
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Normalisation

Observation
The metrics scale differently. Denoting the edgeless graph with n vertices by L, for
all metrics 6 considered so far we have

8(Ln, Kn) =max{6(G,H)11G| = H| = n}.
Furthermore,

28ed(Ln, Kn) =60(G,H)=n(n-1) ~ I72,
6Ied(Lann) =6sp(Gy H) =n—-1~n.

Normalised Metrics

—

0ed(G, H)=28e4(G,H), (G, H):=L18(G,H),
S1ed(G, H) = 1864(G, H), 5ep(G,H) = L64(G, H).
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Example

8ed(Sn Cn) =

2(2n-5)

n2

Relations Between the Normalised Metrics

_ -3
— 0 and  Epa(SmCr)=1"2——1.

n—o0 n n—oo
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Relations Between the Normalised Metrics

Example

5 2(2n-5) — n-3

5ed(5n, Cn) = T m O and 6|ed(5n, Cn) = T m 1.
Corollary
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Relations Between the Normalised Metrics

Example

5 2(2n-5) — n-3

5ed(5ny Cn) = T m O and 6|ed(5n, Cn) = T m 1.
Corollary

For random graphs G,H ~Z(n, %) with high probability it holds that

50(G,H) —0  and 5ea(G, H)=Q(1).

Corollary

60(G,H) < 65p(G,H) <21/8a(G, H).

13
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Comparing Graphs of Distinct Sizes

The Blow-up Construction
G#¥ obtained from G by
» replacing each node by a set of k nodes;

> replacing each edge by a complete bipartite graph.

Blow-up Distance

For every normalised metric 5 and graphs G, H of order
m:=|G|,n:=|H| we define

0%(G, H) = lim 5(G", Hé™).

{—o00

Remark
There is an alternative way of defining the blow-up
distances through an optimal transport formulation.

14
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Properties of the Blow-up Distances

Observation
Let & be one of the metrics considered so far.

1. For all graphs G and k=1 we have 5‘(G, G‘k) =0.
2. For all graphs G, H of the same order it holds that

5%(G,H)<5(G,H).
Furthermore, there are example of graphs where the inequality is strict.

Theorem (Borgs et al. 2008, Pikhurko 2010)
For all graphs G, H of the same order we have

— 67
1~ 50(G,H)
6% (G, H)= 30e(G,H)  and 8%(G,H)= (3—2 :

15
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Vector Embeddings

A vector embedding (of graphs) is an isomorphism invariant mapping n: € — H from
graphs to some Hilbert space H (called the latent space).

A (possibly infinite-dimensional) vector
space with an inner product that is com-
plete w.r.t. the metric defined by the in-
ner product.
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Vector Embeddings

A vector embedding (of graphs) is an isomorphism invariant mapping n: € — H from
graphs to some Hilbert space H (called the latent space).

Every vector embedding n: & — H defines a graph metric:

5(G.H) = 19(G) = (M)l = (n(6) ~n(H).m(G) ~n(H)),

H

Example

n: € — RX mapping G to the k largest eigenvalues of its adjacency matrix Ag in
decreasing order.

Idea
Define vector embedding in such a way that the geometry of the latent space has a
semantic meaning on the space of graphs.

16



Example (Subgraph Embeddings)

.....
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where sub(F, G) is the number of subgraphs of G isomorphic to F.

Examples

17



Examples

Example (Subgraph Embeddings)

.....

where sub(F, G) is the number of subgraphs of G isomorphic to F.

Graphlet kernels are based on this idea.

17



Examples

Example (Subgraph Embeddings)

.....

.....

where sub(F, G) is the number of subgraphs of G isomorphic to F.

Graphlet kernels are based on this idea.

Example (Logic Embeddings)
For formulas ¢1,...,¢x of some logic on graphs (say, first-order logic), we define a

.....

where bj =1 if G [ ¢@; and bj =0 otherwise.

17



Graph Kernels

A graph kernel is a function x: € x & — R such that
» x(G,H)=x(H,G) for all graphs G, H,
» for all graphs Gui,..., Gy, the (nx n)-matrix K with entries Kj; :=x(G;, Gj) is
positive semi-definite.
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Graph Kernels
A graph kernel is a function x: € x & — R such that
» x(G,H)=x(H,G) for all graphs G, H,
» for all graphs Gui,..., Gy, the (nx n)-matrix K with entries Kj; :=x(G;, Gj) is
positive semi-definite.
Theorem (Folklore)
Let x be a graph kernel. Then there is a vector embedding n:& — H such that

x(G,H)) = (1(G),n(H))

H

for all graph G,H.

Example

Weisfeiler-Leman kernels (Shervashidze et al., 2009) are efficiently computable
without ever explicitly computing the vector embedding into the infinite dimensional
latent space.
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Counting Homomorphisms

A homomorphism between graphs is a mapping between the vertices that preserves
adjacency.
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Counting Homomorphisms

A homomorphism between graphs is a mapping between the vertices that preserves
adjacency.

Example
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For all graphs F, G of orders k:=|F|,n:=|G]|:
hom(F, G) =number of homomorphisms from F to G

hd(F,G)= ik hom(F, G)
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Counting Homomorphisms

A homomorphism between graphs is a mapping between the vertices that preserves
adjacency.

Example

For all graphs F, G of orders k:=|F|,n:=|G]|:
hom(F, G) =number of homomorphisms from F to G
1
hd(F, G) = — hom(F,G) = F/:r(h is a homomorphism from F to G),
n

where h is mapping from V/(F) to V(G) chosen uniformly at random.

19



Homomorphism Distances

For every class & of graphs, we define a vector embedding Hdg : € — R by

Hdg (G) = (hd(F,G))reg-
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space.

20



Homomorphism Distances

For every class & of graphs, we define a vector embedding Hdg : € — R by
Hdg(G) = (hd(F, G))Fe%'

We can define an inner product on RZ (even for infinite %) and turn it into a Hilbert
space.

It gives us the (normalised) graph metric

5,7(6,/4):\/2 L Y (hd(F,G)—hd(F, H))?,

k
kel\l2 |Fkl FeF

where Fj is the set of graphs of order k in &.

20



Operational View

Two graphs are similar if they
can easily be transformed into
each other.

Examples
edit distance, all distances based
on matrix norms

Advantage:
gives an alignment between
graphs

Two Sides of Similarity
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Operational View

Two graphs are similar if they
can easily be transformed into
each other.

Examples
edit distance, all distances based
on matrix norms

Advantage:
gives an alignment between
graphs

=

Two Sides of Similarity

Declarative View
Two graphs are similar if they
have similar properties.

Examples
distances based on vector embed-
dings

Advantage:
can be adapted to specific targets
by selecting properties/features

Question: How do these relate?

21
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Let 6,6’ be graph metrics. We say that § is coarser than §' (we write § =¢§') if for all
€ >0 there is an € >0 such that

6'(G,H)<e = 6(G,H) <e.
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Comparing the Topologies (Definitions)

Let 6,6’ be graph metrics. We say that § is coarser than §' (we write § =¢§') if for all
€ >0 there is an € >0 such that

6'(G,H)<e = 6(G,H) <e.
(¥,9")

Moreover, § and 8’ are topologically equivalent (we write §'=6) if =6’ and §' =6,
and § is strictly coarser than &' (we write 6 = 6") if 6=6’ and §' £ 6.

Observation
d= 8’ if and only if the identity is a continuous mapping from the metric space (¢,6')
to the metric space (€,6).

Moreover, 6 =68' if and only if § and &' define the same topology on & .

22



Comparing the Topologies (Results)

Graph Metrics Based on Matrix Norms

i s . .
5¢ = &% C &, C st
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Comparing the Topologies (Results)

Graph Metrics Based on Matrix Norms

i s . .
5¢ = &% C &, C st

Theorem (Borgs et al. 2008)
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Computational Complexity

Theorem (G. et al. 2018, G. and Gervens 2022)
Computing 6ed,01ed,Osp IS NP-complete even if both input graphs are trees.
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Computational Complexity

Theorem (G. et al. 2018, G. and Gervens 2022)
Computing 6ed,01ed,Osp IS NP-complete even if both input graphs are trees.

Remarks

> Various other hardness results are known. In particular, the distances are also
hard to approximate.

> The problem of computing the distances is closely related to the notoriously
hard quadratic assignment problem from combinatorial optimisation.
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For graph metrics 6 defined by matrix norms || - ||:

6(G,H)=min |A" - B]

nesS,

Convex Relaxations
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Convex Relaxations

For graph metrics 6 defined by matrix norms || - ||:

6(G,H)=min |A" - B]

nesS,

=min||AP - PB]|,
P
where min ranges over all (nx n) permutation matrices P.
Convex Relaxation
6"(G,H)= m)in IAX — XB],

where min ranges over all (nx n) doubly stochastic matrices X.
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Convex Relaxations

For graph metrics 6 defined by matrix norms || - ||:

6(G,H)=min |A" - B]

nesS,

=min||AP - PB]|,
P

where min ranges over all (nx n) permutation matrices P.
Convex Relaxation

6"(G,H)= m)in IAX — XB],

where min ranges over all (nx n) doubly stochastic matrices X.

Theorem

8, ;

leq» Osp €an be computed in polynomial time.
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I = class of all trees

Counting Tree Homomorphisms
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Counting Tree Homomorphisms

I = class of all trees

Theorem (Boker 2021, Grebik and Rocha 2022)

o5, = 0 = 0g.
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Learned Embeddings

Graph neural networks are deep learning architectures for graphs. We can use them
to learn vector embeddings of graphs from data.
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Learned Embeddings

Graph neural networks are deep learning architectures for graphs. We can use them
to learn vector embeddings of graphs from data.

Theorem (Boker et al. 2023)
1. Let 6 be a bounded graph metric computed by a GNN. Then § =g .
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Learned Embeddings

Graph neural networks are deep learning architectures for graphs. We can use them
to learn vector embeddings of graphs from data.

Theorem (Boker et al. 2023)

1. Let 6 be a bounded graph metric computed by a GNN. Then § =g .

2. For every n there is a graph metric §(") computed by a GNN such that §(" =54
on graphs of order at most n.
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Concluding Remarks

» Matrix norms and homomorphism counts give principled ways to define graph
metrics, and there are deep and interesting connections between them.
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Concluding Remarks

» Matrix norms and homomorphism counts give principled ways to define graph
metrics, and there are deep and interesting connections between them.

» There are other natural ways of defining graph metrics, most notably by viewing
graphs as finite metric spaces and using notions from discrete geometry (e.g.
Gromov-Wasserstein metric).

» The normalisation we chose is tailored towards dense graphs. Under our
normalised metrics, all sparse graphs are close to the empty graph.

There is no fully developed theory for sparse graphs.
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Further Reading

Most of the material of this talk is covered in the following article.

Grohe, M. (2024). Some Thoughts on Graph Similarity.
arXivi2411.10182
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https://arxiv.org/abs/2411.10182

